Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
J Immunotoxicol ; 21(1): 2332172, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563602

RESUMO

Efficacious therapeutic options capable of resolving inflammatory lung disease associated with environmental and occupational exposures are lacking. This study sought to determine the preclinical therapeutic potential of lung-delivered recombinant interleukin (IL)-10 therapy following acute organic dust exposure in mice. Here, C57BL/6J mice were intratracheally instilled with swine confinement organic dust extract (ODE) (12.5%, 25%, 50% concentrations) with IL-10 (1 µg) treatment or vehicle control intratracheally-administered three times: 5 hr post-exposure and then daily for 2 days. The results showed that IL-10 treatment reduced ODE (25%)-induced weight loss by 66% and 46% at Day 1 and Day 2 post-exposure, respectively. IL-10 treatment reduced ODE (25%, 50%)-induced lung levels of TNFα (-76%, -83% [reduction], respectively), neutrophil chemoattractant CXCL1 (-51%, -60%), and lavage fluid IL-6 (-84%, -89%). IL-10 treatment reduced ODE (25%, 50%)-induced lung neutrophils (-49%, -70%) and recruited CD11cintCD11b+ monocyte-macrophages (-49%, -70%). IL-10 therapy reduced ODE-associated expression of antigen presentation (MHC Class II, CD80, CD86) and inflammatory (Ly6C) markers and increased anti-inflammatory CD206 expression on CD11cintCD11b+ cells. ODE (12.5%, 25%)-induced lung pathology was also reduced with IL-10 therapy. In conclusion, the studies here showed that short-term, lung-delivered IL-10 treatment induced a beneficial response in reducing inflammatory consequences (that were also associated with striking reduction in recruited monocyte-macrophages) following acute complex organic dust exposure.


Assuntos
Pneumopatias , Pneumonia , Animais , Camundongos , Suínos , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Pulmão/patologia , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Poeira
2.
Alcohol ; 118: 9-16, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582261

RESUMO

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.

3.
Respir Res ; 25(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594676

RESUMO

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Assuntos
Pneumopatias , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Lipossomos/metabolismo , Vimentina/metabolismo , Lipopolissacarídeos/farmacologia , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Linfócitos T CD8-Positivos , Pulmão , Macrófagos/metabolismo , Pneumopatias/metabolismo , Exposição Ambiental , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
4.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405874

RESUMO

In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation. We hypothesized that the balance between mTOR and autophagy signaling regulates key features of the asthma epithelial layer. Airway histological sections from subjects with asthma had increased frequency of eGC and increased levels of mTOR phosphorylation target-Ribosomal S6. Using human airway epithelial cells (hAECs) with IL-13 stimulation and timed withdrawal to stimulate resolution, we found that multiple key downstream phosphorylation targets downstream from the mTOR complex were increased during early IL-13-mediated mucous metaplasia, and then significantly declined during resolution. The IL-13-mediated changes in mTOR signaling were paralleled by morphologic changes with airway epithelial hypertrophy, hyperplasia, and frequency of eGC. We then examined the relationship between mTOR and autophagy using mice deficient in autophagy protein Atg16L1. Despite having increased cytoplasmic mucins, mouse AECs from Atg16L1 deficient mice had no significant difference in mTOR downstream signaling. mTOR inhibition with rapamycin led to a loss of IL-13-mediated epithelial hypertrophy, hyperplasia, ectopic GC distribution, and reduction in cytoplasmic MUC5AC levels. mTOR inhibition was also associated with a reduction in aberrant IL-13-mediated hAEC proliferation and migration. Our findings demonstrate that mTOR signaling is associated with mucous metaplasia and is crucial to the disorganized airway epithelial structure and function characteristic of muco-obstructive airway diseases such as asthma. Graphical Abstract Key Concepts: The airway epithelium in asthma is disorganized and characterized by cellular proliferation, aberrant migration, and goblet cell mucous metaplasia.mTOR signaling is a dynamic process during IL-13-mediated mucous metaplasia, increasing with IL-13 stimulation and declining during resolution.mTOR signaling is strongly increased in the asthmatic airway epithelium.mTOR signaling is associated with the development of key features of the metaplastic airway epithelium including cell proliferation and ectopic distribution of goblet cells and aberrant cellular migration.Inhibition of mTOR leads to decreased epithelial hypertrophy, reduced ectopic goblet cells, and cellular migration.

5.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L239-L251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086040

RESUMO

Respiratory-related diseases are a leading cause of death in rheumatoid arthritis (RA) and are disproportionately higher in men, which may be attributable to environmental risk factors. Animal studies have demonstrated potentiated autoimmunity, arthritis, and profibrotic/inflammatory lung disease with a combination of airborne exposures and collagen-induced arthritis (CIA). This study aimed to determine whether hormone-dependent differences explained these observations. Arthritis-prone male intact and castrated DBA/1J mice received intranasal inhalation of lipopolysaccharide (LPS) daily for 5 wk and CIA induction. Arthritis scores and serum pentraxin-2 levels were increased in castrated versus intact mice. In contrast, airway cell influx, lung tissue infiltrates, and lung levels of proinflammatory and profibrotic markers (C5a, IL-33, and matrix metalloproteinases) were reduced in castrated versus intact mice. CIA + LPS-induced lung histopathology changes and the expression of lung autoantigens including malondialdehyde acetaldehyde (MAA)- and citrulline (CIT)-modified proteins and vimentin were reduced in castrated animals. There were no differences in serum anti-MAA or anti-CIT protein antibody (ACPA) levels or serum pentraxin levels between groups. Testosterone replacement led to a reversal of several lung inflammatory/profibrotic endpoints noted earlier in castrated male CIA + LPS-treated mice with testosterone supplementation promoting neutrophil influx, MAA expression, and TNF-α, IL-6, and MMP-9. These findings imply that testosterone contributes to lung and arthritis inflammatory responses following CIA + LPS coexposure, but not to systemic autoantibody responses. The CIA + LPS model provides a paradigm for investigations focused on the mechanistic underpinnings for epidemiologic and phenotypic sex differences in RA-related lung disease.NEW & NOTEWORTHY Our study shows that testosterone acts as a key immunomodulatory hormone contributing to critical features of rheumatoid arthritis (RA)-associated lung disease in the setting of airborne endotoxin (lipopolysaccharide; LPS) exposures and concomitant arthritis induction in mice. The exaggerated airway inflammation observed following combined exposures in male mice was accompanied by increases in profibrotic mediators, netosis, and increased expression of lung autoantigens, all relevant to the pathogenesis of lung disease in arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Pneumopatias , Humanos , Masculino , Feminino , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Endotoxinas , Testosterona/farmacologia , Camundongos Endogâmicos DBA , Autoantígenos
6.
Cells ; 12(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759490

RESUMO

Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.


Assuntos
Alcoolismo , Microbiota , Pneumonia Bacteriana , Humanos , Animais , Camundongos , Alcoolismo/complicações , Disbiose/complicações , Etanol
7.
Am J Ind Med ; 66(9): 794-804, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443418

RESUMO

INTRODUCTION AND METHODS: In this study, we evaluated self-reported respiratory symptoms during agricultural work, respiratory protection use and experience, and perceived value of receiving respirators using Gear Up for Ag Health and Safety Program™ pre- and post-surveys from 703 to 212 young adult hog producers in the United States. To our knowledge, this is one of the most extensive survey data sets on self-reported respiratory symptoms and respiratory protection behaviors of collegiate-aged young adults working in US livestock production. RESULTS: About one-third (37%) of young adult hog producers stated that they have experienced cough, shortness of breath, fever, and chills after working in dusty areas on the farm. Most (76.2%) stated that they were already "always" or "sometimes" wearing filtering facepiece (N95-style) respirators, even before participating in an outreach program. About one-third (30%) reported experience wearing a cartridge-style respirator but only 5% reported having been fit-tested for a respirator. Young adult male producers were significantly more likely to report use of both respirator types when compared to females, both before and after the program. Male producers were also more likely than females to engage in high-risk farm tasks where respirators are recommended, such as cleaning out grain bins and mixing or grinding feed. Following an educational program, males and females reported using the respirators that they received at similar rates, and 20% of overall participants purchased additional respiratory protection. DISCUSSION: The study found that young adult hog producers in postsecondary education are already wearing respirators with some frequency and at rates higher than previously reported by agricultural workers. More research is needed to make effective task-based respirator-use recommendations and investigate some significant gender differences among young adult hog producers observed in this study.


Assuntos
Exposição Ocupacional , Dispositivos de Proteção Respiratória , Feminino , Humanos , Masculino , Adulto Jovem , Estados Unidos , Suínos , Idoso , Exposição Ocupacional/prevenção & controle , Autorrelato , Agricultura , Inquéritos e Questionários , Animais
8.
Am J Pathol ; 193(4): 380-391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37003622

RESUMO

With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.


Assuntos
Infecções por HIV , Pneumonia , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Macaca mulatta , Infecções por HIV/patologia , Pulmão/patologia , Inflamação/patologia , Pneumonia/patologia , Fibrose , Derivados da Morfina
9.
Pathogens ; 12(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986420

RESUMO

Lung conditions such as COPD, as well as risk factors such as alcohol misuse and cigarette smoking, can exacerbate COVID-19 disease severity. Synergistically, these risk factors can have a significant impact on immunity against pathogens. Here, we studied the effect of a short exposure to alcohol and/or cigarette smoke extract (CSE) in vitro on acute SARS-CoV-2 infection of ciliated human bronchial epithelial cells (HBECs) collected from healthy and COPD donors. We observed an increase in viral titer in CSE- or alcohol-treated COPD HBECs compared to untreated COPD HBECs. Furthermore, we treated healthy HBECs accompanied by enhanced lactate dehydrogenase activity, indicating exacerbated injury. Finally, IL-8 secretion was elevated due to the synergistic damage mediated by alcohol, CSE, and SARS-CoV-2 in COPD HBECs. Together, our data suggest that, with pre-existing COPD, short exposure to alcohol or CSE is sufficient to exacerbate SARS-CoV-2 infection and associated injury, impairing lung defences.

10.
Biol Sex Differ ; 14(1): 2, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609358

RESUMO

RATIONALE: Asthma is a chronic airway condition that occurs more often in women than men during reproductive years. Population studies have collectively shown that long-term use of oral contraceptives decreased the onset of asthma in women of reproductive age. In the current study, we hypothesized that steady-state levels of estrogen would reduce airway inflammation and airway hyperresponsiveness to methacholine challenge. METHODS: Ovariectomized BALB/c mice (Ovx) were implanted with subcutaneous hormone pellets (estrogen, OVX-E2) that deliver consistent levels of estrogen [68 ± 2 pg/mL], or placebo pellets (OVX-Placebo), followed by ovalbumin sensitization and challenge. In conjunction with methacholine challenge, immune phenotyping was performed to correlate inflammatory proteins and immune populations with better or worse pulmonary outcomes measured by invasive pulmonary mechanics techniques. RESULTS: Histologic analysis showed an increase in total cell infiltration and mucus staining around the airways leading to an increased inflammatory score in ovarectomized (OVX) animals with steady-state estrogen pellets (OVX-E2-OVA) as compared to other groups including female-sham operated (F-INTACT-OVA) and OVX implanted with a placebo pellet (OVX-Pl-OVA). Airway resistance (Rrs) and lung elastance (Ers) were increased in OVX-E2-OVA in comparison to F-INTACT-OVA following aerosolized intratracheal methacholine challenges. Immune phenotyping revealed that steady-state estrogen reduced CD3+ T cells, CD19+ B cells, ILC2 and eosinophils in the BAL across all experiments. While these commonly described allergic cells were reduced in the BAL, or airways, we found no changes in neutrophils, CD3+ T cells or CD19+ B cells in the remaining lung tissue. Similarly, inflammatory cytokines (IL-5 and IL-13) were also decreased in OVX-E2-OVA-treated animals in comparison to Female-INTACT-OVA mice in the BAL, but in the lung tissue IL-5, IL-13 and IL-33 were comparable in OVX-E2-OVA and F-INTACT OVA mice. ILC2 were sorted from the lungs and stimulated with exogenous IL-33. These ILC2 had reduced cytokine and chemokine expression when they were isolated from OVX-E2-OVA animals, indicating that steady-state estrogen suppresses IL-33-mediated activation of ILC2. CONCLUSIONS: Therapeutically targeting estrogen receptors may have a limiting effect on eosinophils, ILC2 and potentially other immune populations that may improve asthma symptoms in those females that experience perimenstrual worsening of asthma, with the caveat, that long-term use of estrogens or hormone receptor modulators may be detrimental to the lung microenvironment over time.


Assuntos
Asma , Interleucina-33 , Feminino , Animais , Camundongos , Interleucina-33/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Imunidade Inata , Interleucina-13/uso terapêutico , Cloreto de Metacolina/farmacologia , Cloreto de Metacolina/uso terapêutico , Alérgenos/uso terapêutico , Resistência das Vias Respiratórias , Interleucina-5/uso terapêutico , Líquido da Lavagem Broncoalveolar , Linfócitos/metabolismo , Linfócitos/patologia , Pulmão/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas , Estrogênios/uso terapêutico
11.
J Immunotoxicol ; 20(1): 2148782, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538286

RESUMO

The Toll-like receptor (TLR) adaptor protein MyD88 is integral to airway inflammatory response to microbial-enriched organic dust extract (ODE) exposures. ODE-induced airway neutrophil influx and release of pro-inflammatory cytokines was essentially abrogated in global MyD88-deficient mice, yet these mice demonstrate an increase in airway epithelial cell mucin expression. To further elucidate the role of MyD88-dependent responses specific to lung airway epithelial cells in response to ODE in vivo, the surfactant protein C protein (SPC) Cre+ embryologic expressing airway epithelial cells floxed for MyD88 to disrupt MyD88 signaling were utilized. The inducible club cell secretory protein (CCSP) Cre+, MyD88 floxed, were also developed. Using an established protocol, mice were intranasally instilled with ODE or saline once or daily up to 3 weeks. Mice with MyD88-deficient SPC+ lung epithelial cells exhibited decreased neutrophil influx following ODE exposure once and repetitively for 1 week without modulation of classic pro-inflammatory mediators including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and neutrophil chemoattractants. This protective response was lost after 3 weeks of repetitive exposure. ODE-induced Muc5ac mucin expression at 1 week was also reduced in MyD88-deficient SPC+ cells. Acute ODE-induced IL-33 was reduced in MyD88-deficient SPC+ cells whereas serum IgE levels were increased at one week. In contrast, mice with inducible MyD88-deficient CCSP+ airway epithelial cells demonstrated no significant difference in experimental indices following ODE exposure. Collectively, these findings suggest that MyD88-dependent signaling targeted to all airway epithelial cells plays an important role in mediating neutrophil influx and mucin production in response to acute organic dust exposures.


Assuntos
Exposição por Inalação , Fator 88 de Diferenciação Mieloide , Animais , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Exposição por Inalação/efeitos adversos , Transdução de Sinais , Interleucina-6/metabolismo , Receptores Toll-Like , Fator de Necrose Tumoral alfa/metabolismo , Poeira , Mucinas/metabolismo , Mucinas/farmacologia , Camundongos Endogâmicos C57BL
12.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 36-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446606

RESUMO

Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.


Assuntos
Alcoolismo , Humanos , Alcoolismo/metabolismo , Etanol/metabolismo , Fígado , Macrófagos Alveolares/metabolismo , Pulmão
13.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 95-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352814

RESUMO

BACKGROUND: Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS: In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS: Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.


Assuntos
Alcoolismo , COVID-19 , Humanos , Acetaldeído/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Malondialdeído/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Etanol , Proteínas/metabolismo , Ligação Proteica
14.
Sci Rep ; 12(1): 17338, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243830

RESUMO

Although lung diseases typically result from long-term exposures, even a robust, one-time exposure can result in long-lasting consequences. Endotoxin is a ubiquitous environmental/occupational inflammatory agent often used to model airway inflammation. Using a murine model, the return to lung homeostasis following high dose inhalant lipopolysaccharide (LPS, 10-100 µg) exposure were delineated over 2 weeks. LPS-induced rapid weight loss, release of proinflammatory mediators, and inflammatory cell influx with prolonged persistence of activated macrophages CD11c+CD11b+ and recruited/transitioning CD11cintCD11b+ monocyte-macrophages out to 2 weeks. Next, lung-delivered recombinant (r) interleukin (IL)-10 was intratracheally administered for 3 doses initiated 5 h following LPS (10 µg) exposure for 2 days. IL-10 therapy reduced LPS-induced weight loss and increased blood glucose levels. Whereas there was no difference in LPS-induced bronchoalveolar lavage airway fluid cellular influx, total lung cell infiltrates were reduced (37%) with rIL-10 treatment. Post-LPS exposure treatment with rIL-10 strikingly reduced lavage fluid and lung homogenate levels of tumor necrosis factor-α (88% and 93% reduction, respectively), IL-6 (98% and 94% reduction), CXCL1 (66% and 75% reduction), and CXCL2 (47% and 67% reduction). LPS-induced recruited monocyte-macrophages (CD11cintCD11b+) were reduced (68%) with rIL-10. Correspondingly, LPS-induced lung tissue CCR2+ inflammatory monocyte-macrophage were reduced with rIL-10. There were also reductions in LPS-induced lung neutrophils, lymphocyte subpopulations, collagen content, and vimentin expression. These findings support the importance of studying resolution processes for the development of treatment after unintended environmental/occupational biohazard exposures. Short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high dose inhalant LPS exposure.


Assuntos
Interleucina-10 , Pneumonia , Animais , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar , Antígeno CD11c/metabolismo , Endotoxinas/metabolismo , Substâncias Perigosas/efeitos adversos , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Camundongos , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo , Redução de Peso
15.
Pharmaceutics ; 14(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36145590

RESUMO

Generating long-lived mucosal and systemic antibodies through respiratory immunization with protective antigens encapsulated in nanoscale biodegradable particles could potentially decrease or eliminate the incidence of many infectious diseases, but requires the incorporation of a suitable mucosal immunostimulant. We previously found that respiratory immunization with a model protein antigen (LPS-free OVA) encapsulated in PLGA 50:50 nanoparticles (~380 nm diameter) surface-modified with complement peptide-derived immunostimulant 02 (CPDI-02; formerly EP67) through 2 kDa PEG linkers increases mucosal and systemic OVA-specific memory T-cells with long-lived surface phenotypes in young, naïve female C57BL/6 mice. Here, we determined if respiratory immunization with LPS-free OVA encapsulated in similar PLGA 50:50 microparticles (~1 µm diameter) surface-modified with CPDI-02 (CPDI-02-MP) increases long-term OVA-specific mucosal and systemic antibodies. We found that, compared to MP surface-modified with inactive, scrambled scCPDI-02 (scCPDI-02-MP), intranasal administration of CPDI-02-MP in 50 µL sterile PBS greatly increased titers of short-term (14 days post-immunization) and long-term (90 days post-immunization) antibodies against encapsulated LPS-free OVA in nasal lavage fluids, bronchoalveolar lavage fluids, and sera of young, naïve female C57BL/6 mice with minimal lung inflammation. Thus, surface modification of ~1 µm biodegradable microparticles with CPDI-02 is likely to increase long-term mucosal and systemic antibodies against encapsulated protein antigen after respiratory and possibly other routes of mucosal immunization.

16.
Gastroenterology ; 163(4): 1064-1078.e10, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788346

RESUMO

BACKGROUND & AIMS: Epidemiological studies have established alcohol and smoking as independent risk factors for recurrent acute pancreatitis and chronic pancreatitis. However, the molecular players responsible for the progressive loss of pancreatic parenchyma and fibroinflammatory response are poorly characterized. METHODS: Tandem mass tag-based proteomic and bioinformatics analyses were performed on the pancreata of mice exposed to alcohol, cigarette smoke, or a combination of alcohol and cigarette smoke. Biochemical, immunohistochemistry, and transcriptome analyses were performed on the pancreatic tissues and primary acinar cells treated with cerulein in combination with ethanol (50 mmol/L) and cigarette smoke extract (40 µg/mL) for the mechanistic studies. RESULTS: A unique alteration in the pancreatic proteome was observed in mice exposed chronically to the combination of alcohol and cigarette smoke (56.5%) compared with cigarette smoke (21%) or alcohol (17%) alone. The formation of toxic metabolites (P < .001) and attenuated unfolded protein response (P < .04) were the significantly altered pathways on combined exposure. The extracellular matrix (ECM) proteins showed stable malondialdehyde-acetaldehyde (MAA) adducts in the pancreata of the combination group and chronic pancreatitis patients with a history of smoking and alcohol consumption. Interestingly, MAA-ECM adducts significantly suppressed expression of X-box-binding protein-1, leading to acinar cell death in the presence of alcohol and smoking. The stable MAA-ECM adducts persist even after alcohol and smoking cessation, and significantly delay pancreatic regeneration by abrogating the expression of cyclin-dependent kinases (CDK7 and CDK5) and regeneration markers. CONCLUSIONS: The combined alcohol and smoking generate stable MAA-ECM adducts that increase endoplasmic reticulum stress and acinar cell death due to attenuated unfolded protein response and suppress expression of cell cycle regulators. Targeting aldehyde adducts might provide a novel therapeutic strategy for the management of recurrent acute pancreatitis and chronic pancreatitis.


Assuntos
Acetaldeído , Pancreatite Crônica , Acetaldeído/metabolismo , Doença Aguda , Aldeídos , Animais , Ceruletídeo , Quinases Ciclina-Dependentes/metabolismo , Etanol/toxicidade , Proteínas da Matriz Extracelular/metabolismo , Malondialdeído/metabolismo , Camundongos , Proteoma/metabolismo , Proteômica , Fumar/efeitos adversos , Resposta a Proteínas não Dobradas
17.
Front Immunol ; 13: 866795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669781

RESUMO

Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.


Assuntos
Acetaldeído , Alcoolismo , Acetaldeído/química , Acetaldeído/metabolismo , Alcoolismo/metabolismo , Humanos , Pulmão/metabolismo , Malondialdeído , Proteína D Associada a Surfactante Pulmonar/metabolismo
18.
Alcohol ; 103: 1-7, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659577

RESUMO

On November 19th, 2021, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at Loyola University Chicago Health Sciences Campus in Maywood, Illinois. The 2021 meeting focused on how alcohol misuse is linked to immune system derangements, leading to tissue and organ damage, and how this research can be translated into improving treatment of alcohol-related disease. This meeting was divided into three plenary sessions: the first session focused on how alcohol misuse affects different parts of the immune system, the second session presented research on mechanisms of organ damage from alcohol misuse, and the final session highlighted research on potential therapeutic targets for treating alcohol-mediated tissue damage. Diverse areas of alcohol research were covered during the meeting, from alcohol's effect on pulmonary systems and neuroinflammation to epigenetic changes, senescence markers, and microvesicle particles. These presentations yielded a thoughtful discussion on how the findings can lead to therapeutic treatments for people suffering from alcohol-related diseases.


Assuntos
Alcoolismo , Alcoolismo/genética , Epigênese Genética , Etanol/efeitos adversos , Humanos , Inflamação/genética , Opinião Pública
19.
Respir Res ; 23(1): 160, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717175

RESUMO

Immunogenetic as well as environmental and occupational exposures have been linked to the development of rheumatoid arthritis (RA), RA-associated lung disease, and other primary lung disorders. Importantly, various inhalants can trigger post-translational protein modifications, resulting in lung autoantigen expression capable of stimulating pro-inflammatory and/or pro-fibrotic immune responses. To further elucidate gene-environment interactions contributing to pathologic lung inflammation, we exploited an established model of organic dust extract (ODE) exposure with and without collagen-induced arthritis (CIA) in C57BL/6 wild type (WT) versus HLA-DR4 transgenic mice. ODE-induced airway infiltration driven by neutrophils was significantly increased in DR4 versus WT mice, with corresponding increases in bronchoalveolar lavage fluid (BALF) levels of TNF-⍺, IL-6, and IL-33. Lung histopathology demonstrated increased number of ectopic lymphoid aggregates comprised of T and B cells following ODE exposure in DR4 mice. ODE also induced citrullination, malondialdehyde acetaldehyde (MAA) modification, and vimentin expression that co-localized with MAA and was enhanced in DR4 mice. Serum and BALF anti-MAA antibodies were strikingly increased in ODE-treated DR4 mice. Coupling ODE exposure with Type II collagen immunization (CIA) resulted in similarly augmented pro-inflammatory lung profiles in DR4 mice (relative to WT mice) that was accompanied by a profound increase in infiltrating lung CD4+ and CD8+ T cells as well as CD19+CD11b+ autoimmune B cells. Neither modeling strategy induced significant arthritis. These findings support a model in which environmental insults trigger enhanced post-translational protein modification and lung inflammation sharing immunopathological features with RA-associated lung disease in the selected immunogenetic background of HLA-DR4 mice.


Assuntos
Artrite Reumatoide , Pneumopatias , Pneumoconiose , Pneumonia , Animais , Autoantígenos , Linfócitos T CD8-Positivos/metabolismo , Poeira , Antígeno HLA-DR4/metabolismo , Pulmão/metabolismo , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumoconiose/metabolismo , Pneumonia/metabolismo
20.
Alcohol Clin Exp Res ; 46(6): 1023-1035, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429004

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) has affected every country globally, with hundreds of millions of people infected with the SARS-CoV-2 virus and over 6 million deaths to date. It is unknown how alcohol use disorder (AUD) affects the severity and mortality of COVID-19. AUD is known to increase the severity and mortality of bacterial pneumonia and the risk of developing acute respiratory distress syndrome. Our objective is to determine whether individuals with AUD have increased severity and mortality from COVID-19. METHODS: We utilized a retrospective cohort study of inpatients and outpatients from 44 centers participating in the National COVID Cohort Collaborative. All were adult COVID-19 patients with and without documented AUDs. RESULTS: We identified 25,583 COVID-19 patients with an AUD and 1,309,445 without. In unadjusted comparisons, those with AUD had higher odds of hospitalization (odds ratio [OR] 2.00, 95% confidence interval [CI] 1.94 to 2.06, p < 0.001). After adjustment for age, sex, race/ethnicity, smoking, body mass index, and comorbidities, individuals with an AUD still had higher odds of requiring hospitalization (adjusted OR [aOR] 1.51, CI 1.46 to 1.56, p < 0.001). In unadjusted comparisons, individuals with AUD had higher odds of all-cause mortality (OR 2.18, CI 2.05 to 2.31, p < 0.001). After adjustment as above, individuals with an AUD still had higher odds of all-cause mortality (aOR 1.55, CI 1.46 to 1.65, p < 0.001). CONCLUSION: This work suggests that AUD can increase the severity and mortality of COVID-19 infection. This reinforces the need for clinicians to obtain an accurate alcohol history from patients hospitalized with COVID-19. For this study, our results are limited by an inability to quantify the daily drinking habits of the participants. Studies are needed to determine the mechanisms by which AUD increases the severity and mortality of COVID-19.


Assuntos
Alcoolismo , COVID-19 , Adulto , Alcoolismo/epidemiologia , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...